Réflexions d'enseignants de maternelle sur le numérique dans les activités scientifiques : transformations dues à la formation
DOI:
https://doi.org/10.26220/mje.4609Keywords:
Teacher training, kindergarten, Physical Sciences, Information and Communication Technologies in EducationAbstract
This article presents a study of the ideas of preschool physical science teachers on the integration of the use of Information and Communication Technologies in Education and also on training in this field. This study is carried out on the basis of an interview and in the light of the framework of the didactics of the physical sciences, before and after the realization of a seminar on the use of new technologies in kindergarten teaching. The results of this survey showed that after the seminar, teachers changed their minds about the problems related to the use of ICT in schools and about the type of training they wanted to participate in.References
Ahaji, K., El Hajjami, A., Ajana, L., El Mokri, A., & Chikhaoui, A. (2008). Analyse de l’effet d’intégration d’un logiciel d’optique géométrique sur l’apprentissage d’élèves de niveau baccalauréat sciences expérimentales. EpiNet, 101. Retrieved from http://www.epi.asso.fr/revue/articles/a0801a.htm.
Arun, Z. (2017). Formation des enseignants et recherche en didactique des sciences. European Journal of Education Studies, 3(9), 206-216.
Arun, Z. (2018). Questions sur la formation initiale des enseignants en didactique des sciences: une vision alternative. European Journal of Alternative Education Studies, 3(1), 44-53.
Arun, Z. (2019). Questions sur la formation des enseignants de l’école maternelle et primaire aux technologies de l'information et de la communication en éducation. European Journal of Open Education and E-learning Studies, 4(1), 10-21.
Bronckart, J. P., & Plazaola Giger, I. (1998). La transposition didactique. Histoire et perspectives d’une problematique fondatrice. Pratiques, 97/98, 35-58.
Castro, D. (2013). Light mental representations of 11-12 year old students. Journal of Social Science Research, 2(1), 35-39.
Castro, D. (2018). Schèmes et trajectoires pour la formation des enseignants des sciences. European Journal of Education Studies, 4(3), 260-269.
Castro, D. (2019). Approches didactiques à l’école maternelle : La numérique et la traditionnelle au cas de la lumière. European Journal of Open Education and E-learning Studies, 4(1), 113-123.
Doering, A., Scharber, C., Miller, C., & Veletsianos, G. (2009). Geothentic: Designing and assessing with technological pedagogical content knowledge. Contemporary Issues in Technology and Teacher Education, 9(3), 316-336.
Draganoudi, A., Lavidas, K., & Kaliampos, G. (2021). Kindergarten teachers' representations for their socio-cognitive practices during the natural sciences activities. Acta Didactica Napocensia, 14(1), 174-181.
Draganoudi, A., Lavidas, K., Kaliampos, G., & Ravanis, K. (2022). Les représentations des enseignants du cycle maternel relatives aux leurs pratiques empiristes lors des activités en sciences. Mediterranean Journal of Education, 2(1), 118-127.
Draganoudi, A., Lavidas, K., Kaliampos, G., & Ravanis, K. (2023). Developing a research instrument to record preschool teachers’ beliefs about teaching practices in natural sciences. South African Journal of Education, 43(1), 2031. https://doi.org/10.15700/saje.v43n1a2031.
Droui, M., & El Hajjami, A. (2014). Simulations informatiques en enseignement des sciences : apports et limites. EpiNet, 164. Retrieved from http://www.epi.asso.fr/revue/articles/a1404e.htm.
Grigorovitch, A. (2014). Children’s misconceptions and conceptual change in Physics Education: The concept of light. Journal of Advances in Natural Sciences, 1(1), 34-39.
Grigorovitch, A. (2015). Teaching optics perspectives: 10-11 year old pupils' representations of light. International Education & Research Journal, 1(3), 4-6.
Guir, R. (2002). Pratiquer les TICE. Former les enseignants et les formateurs à de nouveaux usages. Bruxelles: De Boeck.
Hammond, T. C., & Manfra, M. (2009). Giving, prompting, making: Aligning technology and pedagogy within TPACK for social studies instruction. Contemporary Issues in Technology and Teacher Education, 9(2), 160-185.
Harris, J. B., & Hofer, M. J. (2009). Instructional planning activity-types as vehicles for curriculum-based TPACK development. In C. D. Maddux (Ed.), Research highlights in technology and teacher education (pp. 99-108). Chesapeake, VA: Society for Information Technology.
Kaliampos, G., Kada, V., Saregar, A., & Ravanis, K. (2020). Preschool pupils’ mental representations on electricity, simple electrical circuit and electrical appliances. European Journal of Education Studies, 7(12), 596-611.
Koehler, M. J., & Mishra, P. (2008). Introducing TPCK. AACTE Committee on Innovation and Technology (Ed.), The handbook of technological pedagogical content knowledge (TPCK) for educators (pp. 3-29). Mahwah, NJ: Lawrence Erlbaum Associates.
Kokologiannaki, V., & Ravanis, K. (2013). Greek sixth graders mental representations of the mechanism of vision. New Educational Review, 33(3), 167-184.
Kola, A. J. (2013). Effective teaching and learning in Science Education through Information and Communication Technology. IOSR Journal of Research & Method in Education, 2(5), 43-47.
Lebrun, J., Lenoir, Y., Oliveira, A. A., & Chalghoumi, H. (2005). La recherche sur les pratiques enseignantes effectives au préscolaire et au primaire : Regard critique sur leurs contributions à l’élaboration d’un référentiel professionnel. In C. Gervais & L. Portelance (Éd.), Des savoirs au cœur de la profession enseignante. Contextes de construction et modalités de partage (pp. 265-285). Sherbrooke: Éditions du CRP.
Lefdaoui, Y., Boubker, N., & Nafil, K. (2014). Jeux pour apprendre et enseigner l’éducation au développement durable : Explorer la pertinence du jeu et l’apprentissage expérientiel pour la durabilité. Educational Journal of the University of Patras UNESCO Chair, 1(2), 134-147.
Mahdi, K., Laafou, M., & Janati-Idrissi, R. (2015). Qualifications of Physics teachers in ICT to integrate the use of ICT in Moroccan Physics Schools: obstacles and solutions. Journal of Educational and Social Research, 5(1), 177-182.
Mujawamariya, D. (2000). De la nature du savoir scientifique à l’enseignement des sciences : L’urgence d’une approche constructiviste dans la formation des enseignants de sciences. Formation et Profession, 28(2), 148-163.
Nertivich, D. (2013). Magnetic field mental representations of 15-16 year old students. Journal of Advances in Physics, 2(1), 53-58.
Nertivich, D. (2016). Représentations des élevés de 11-12 ans pour la formation des ombres et changement conceptuel. International Journal of Progressive Sciences and Technologies, 3(2), 103-107.
Peeraer, J., & Petegem, P. V. (2010). Factors influencing integration of ICT in Higher Education in Vietnam. In Proceedings of Global Learn Asia Pacific (pp. 916-924). Penang, Malaysia: AACE.
Ravanis, K. (2020). Precursor models of the Physical Sciences in Early Childhood Education students’ thinking. Science Education Research and Praxis, 76, 24-31.
Ravanis, K. (2021). The Physical Sciences in Early Childhood Education: theoretical frameworks, strategies and activities. Journal of Physics: Conference Series, 1796, 012092. https://doi.org/10.1088/1742-6596/1796/1/012092
Ravanis, K. (2022). Research trends and development perspectives in Early Childhood Science Education: an overview. Education Sciences, 12(7), 456. https://doi.org/10.3390/educsci12070456
Richardson, V. (1997). Constructivist teaching and teacher education: theory and practice. In V. Richardson (Ed.), Constructivist teacher education: Building a world of new understandings (pp. 3-14). London: Falmer Press.
Rodriguez, D. (2019). Interactions didactiques en sciences physiques. Une stratégie pour l’enfant d’âge préscolaire. European Journal of Alternative Education Studies, 4(2), 89-102.
Sebring, P. B., Allensworth, E., Bryk, A. S., Easton, J. Q., & Luppescu, S. (2006). The essential supports for school improvement. Chicago, Illinois: Consortium on Chicago School Research.
Sharp, J. S., Glover, P. M., & Moseley, W. (2007). Computer based learning in an undergraduate physics laboratory: interfacing and instrument control using Matlab. European Journal of Physics, 28(3), 1-12.
Siabeycius, J., & Poicin, D. (2012). How ICT can enhance the attractiveness of Mathematics and Physics in Primary School. Problems of Education in the 21st Century, 50, 101-107.
Skamp, K. (2008). Teaching primary science constructively. Victoria: Thompson Learning Australia.
Sotirova, E.-M. (2017). L’apprentissage en sciences expérimentales : la recherche et l’enseignement. European Journal of Education Studies, 3(12), 188-198.
Stoica, I., Moraru, S., & Miron, C. (2010). An argument for a paradigm shift in the science teaching process by means of educational software. Procedia – Social and
Behavioral Sciences, 2(2), 4407-4411.
Teddlie, C., & Reynolds, D. (2000). The international handbook of school effectiveness research. New York: Falmer Press.
Tin, P. S. (2016). Peuvent-ils les enfants de l’âge préscolaire construire un modèle pour la flottaison et l’immersion ? International Journal of Progressive Sciences and Technologies, 4(2), 72-76.
Viau, R. (2009). La motivation en contexte scolaire. Bruxelles: De Boeck.
Voutsinos, C. (2013). Teaching Optics: Light sources and shadows. Journal of Advances in Physics, 2(2), 134-138.
Zacharis, G. K., & Tsitouridou, M. (2019). MOOCs and Science conceptions: Challenges on teacher education. Educational Journal of the University of Patras UNESCO Chair, 6(1), 362-368.